-.«,—w&

L

-‘Myh-v&rm mm'" P e L . W ‘.ﬂmw ad 'M“\-”

med Servies Techicallformation ﬂgency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED
YOUR PURPOSE so that it may be made available to other requesters, Your cooperatlon
will be appreciated,.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
.GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS

'NO RESPONSIBILITY, NOR ANY OBLIGATION MATSOEVER; AND THE FACT THAT THE

| GOVERNMENT MAY HAVE FORMULATED, F HED, OR IN ANY WAY SUPPLIED THE

' ‘L SAID DRAWINGS, SPECIFICATIONS, OR UI‘HER DATA IS NOT TO BE REGARDED BY

b 8 IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER
*| PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR.PERMISSION TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

| | | Reproduced by - .

DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, 04O

ICT ASSIFIED

L
g




' ""ﬂ“”‘"‘”‘“”"‘."‘: ""'“"“ qi:’ T “

P % & AR YIr, et FEOLRIRTES TR ol ;;‘,Mm-mmrﬁvrAWﬁqw‘mW»mmmp . o oty 10

ERs TITAS L

g v
I \.‘,A;)w [N




OFFICE OF NAVAL RkSEARCH
Contract N6 onr-27015
Project NR 212-005

6o i A REVIEW OF ROTOR INDUCED VELOCITY

: ; FIELD THEORY

Aeronautical Engineering Department
Report No. 248

January, 1954

Prepared by: Wfém .
ROBIN Bb‘ GRAY i ,

A O Wi /s g
A. A. NIKOLSKY '

Approved by:

!

e e e AT e b g ot S R i g
Lt i R G A A (S A B . T T TSR R ST R SPHTES TIEY - : - '*'*‘\":"’I’Wﬂz“«'w‘w

C g

Ereds T

i e




Summary

~
~

I
A review of all the currently aveilable papers concerned with the .solution

of the prgblem of the induced velocity field of a helicopter rotor is presented.

J\'))
* The assumptions, applications, and limitations of each paper are given. Six;qe,

in general, all the theories are very limited in their applicability, 1t718

recommended that further theoretical and experimental investigations be

initiated which will be directed toward a more accurate prediction of the

induced velocity field about a rotor.
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until recently that

control and vibrational dAifficulties which were obviously brought about by the
variation in the rotor inflow velocities. The theories available were merely

extensions of the propeller theories whose origin, except for the vortex

concept, lay in the
: . element, and vortex
f woefully inadequate
control, vibration,
slow forward fiight

vThe purpose of

E =ach theory, to reach a conclusion concerning the state of the knowledge and to

| ‘ point out, if possible, ways and means of improving or extending the theory.

This review is

? i beginning to its present state. Since the investigations and theoretical

e A T ST e ——,

Although the concept of the lifting rotor is quite old, it has not been

around such a rotor have been theoretically and experimentally investigated. 1In
fact, in general, such investigations were necessarily delayed until the

successful flight of a lifting rotor in various regimes began to point out

induced velocity field theory, to present the applicability and limitations of '

blade element theory, combined momentum and blade element theory, and vortex

L 4 theory. The development of each concept is treated chronologically from its

analyses of marine screws, propellers, and rotors prior to 1935 are ade-uately
presented and referenced by H. Glauert in reference 1, this work is the primary
source for material prior to that year. Thereafter, only the individual papers

that dealt solely with rotors and their special problems are reviewed.

Introduction

the special problems involving the air flow through and

older marine screw theories. While these momentum, blade
theories are adequate for performance estimation, they are
for use in predicting blade motions for stability and

and blade stress problems. This is particularly true at
speeds and vertical descent.

this review then is to trace the development of the rotor

divided into four main parts as fcllows: momentum theory,
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This literature review of rotor induced velocity field theories was

carried out at Princeton University under the sponsorship and with the financial
. 4

' A
asslstance of the Office of Naval Research. \\

It might be well to briefly review the various flight regimeé of the \
’ !

helicopter before starting the review. There are -three 'baéic flo;f bé.f.ternsy,.

‘ . . it
¢ The first corresponds to the propeller working state and includes hovering,‘\
horizontal, and ascending flight. In these flight regime‘s , tﬁe alr at a great
distance ahead of the rotor and the air passin: through the roqof in general

proceed in a downward direction with respect to the tip-path plane. The second

flow pattern is designated the windmill-brake state. This corresponds to a

flight condition in which the rotor is disconnected from the engine and is

driven by the air passing through it. In“this case, the air at a great distance ;
ahead of the rotor and the air passing through the rotor proceed in an upward ‘
direction with respect to the tip path plane. The third flow pattern lies
between the first two. This corresponds to certain pbrtidns of the descending
flight regime and is called the vortex-ring state. Rotor operation in this
state is usually very rough. The alr at a great distance a.head of the rotor is §
moving upward while the air passing through the rotor disk is moving downward
with respect to the tip path plane. The limiting condition Eetween 'the vortex- ;
ring and the windmill-brake states is called the ideal autorot;;;ion‘ cbndition .
in which very little air passes through the disk. The limit be-tween tize
. propeller-working and vortex-ring states in vertical fliéht"is o:;." céurse the
hovering condition. In forward flight this limit will iie a.iong éomeiescending

flight path since the tip path plane is usually inclined fdrwa.rd.
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List of Symbols

Throughout this paper an effort was made to use as many as possible of the
standard symbols for helicopters as set forth in reference 2. This necessitated
the replacement of some of the symbols in some of the papers reviewed with these
standard symbols. In some cases, however, this was not feasible and some
duplication exists. In these cases, the symbol is defined where used, and it

is hoped that no confusion will arise.

a slope of lift curve for blade element, per radian (blade element section)
a axial interference factor, U, = V (L + a) . (momentum section)

at rotational interference factor, u' = =2a'll

8, longitudinal angle between the rotor shaft and the perpendicular to the
tip path plane, radians
b number of blades in rotor

c blade chord at radius r
c, section profile - drag coefficient

Cy section 1ift coefficient

C;  rotor thrust coefficient P_fl:’i‘—ﬁ—"_
cr rotor thrust coefficient based on flight velocity %2—

K non-dimensional function f (% ,-’-;-, b ) in Goldstein vortex theory

L 1lift, pounds

bl static pressure, pounds per square foot

P power, foot-pounds per second

Q rotor torque, foot-pounds

T radius of blade element from rotor center, feet
R radius of fotor blade tip, feet

R, radius of wltimate rotor wake, feet

o

s gap distance between vortex sheets forming wake, feet




rotor thrust, pounds

rotational component of wake velocity, radians per second

component of resultant velocity at blade element that is normal to blade
axis, feet per second

~ component of resultant velocity at blade element that is normal to blade

span axis and U, , feet per second

component of resultant velocity in ultimate wake that is normal to a
plane parallel to tip path plane, feet per second.

component of resultant velocity at blade element that is normal to blade-
span axis and to axis of no-feathering, feet per sgcond

normal component of induced velocity at tip-path plane, feet per second
vector sum of the three components of induced velocity, feet per second

average value of fore-and-aft induced velocity at the center of the d.isk,
feet per second

rate of change of induced velocity at center of disk, feet per second .

- radial component of velocity induced at a point P by a vortex ring, feet

per second

axial component of velocity induced at a point P by a vortex ring, feet
per second

axiel component of induced velocity at 3/h radius due to bound
vortices, feet per second

axial component of induced velocity at rotor center due to [,
component of the free tip vortices, feet per second

axial component of induced velocity at 3/’4 radius due to o
component of the free tip vortices, feet per second

axial component of induced velocity at 3/4 radius due to the free-
radial and tip vortices, feet per second )

true airspeed of helicopter along flight pa.th, feet per second

camponent of true airspeed of Lelicopter normal to tip path plane, feet
per second

rotational component of induced velocity, feet per second
gross weight of helicopter, pounds

velocity of axial translation of the rigid helicoidal surface, feet per
second




bq ratio of blade-element radius to rotor-blade radius, r/R

C, attitude angle of fuselage; angle between rotor axis and the vertical,
radians

of, blade-element angle of attack measured from line of zero lift, radians

o, a.ng,le between the slipstream and the perpendicular to the tip-path plane
at the rotor disk, radians

oGy angle of attack of tip-path plane measured in the longitudinal plane
between the flight-path velocity vector and tip-path plane, radians

r circulation of blade element at radius r and azimuth angle

r.,; constants in expression for I (r=r; - F‘,;uv ¥)

£ ratio of profile-drag coefficient to lift coefficient %3
propeller efficiency

n
e blade pitch angle at particular blade radius a.nd a.zimut.h position, radians
K

coefficient in Goldstein vortex theory as modified by Lock which represents
the circulation loss along the blade

in-plane velocity ratio at tip path plane Veas oy

M QR

P density of air, slugs per cubic foot

o rotor solidity at radius, r
P inflow angle at blade element measured in plane perpendicular to blade
,f, axis and between tip-path plane and relative wind, radians
'~ P angle that the helical surfaces of the vortex sheets make with the

! propeller disk plane, radians
§p potential at & point P due to & closed vortex ring
X waeke skew angle, angle between perpendicular to tip path plane and wake

boundary at a far distance below the rotor disk in a longitudinal plane,
radians

el

"P azimuth position of blade measured from downwind position in direction of
rotation, radians

R R A

: w s0lid angle subtended at a point by a vortex ring

0 rotor angular velocity, radians per second

Subscript - r, unless otherwise noted, denotes radial position on blade
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Momentum Theory

The simple axial momentum theory as first originated by W. J. M. Rankine
in 1865 (reference 3) was based on the concept that the forces experienced by
a set of rotating blades immersed in a frictionless, incompressible fluid were
equal to that necessary to provide the resulting motions of the fluid. 'In
further simplifying the physical picture, it was assumed that the slipstream
had no rotationel component, that the thrust ofrﬁhe propeller was constant
over the disk, that the axial velocity of the fluid had a constant value over
the disk and over a cross-section of the ultimate wske, and that the resuitant
pressure force on the whole fluid was zero. Then assuming the propeller to be
at rest and the fluid to have a uniform velocity along its axis, the thrust oﬁ
the propeller was equated to the axial increase in momentum in unit time, so

that

T= TRIPY(%- V)
where the subscript 1 refers to the ultimate wake. Since the propeller waé
assumed to be at rest, no useful work was done and the power sbsorbed was taken
as being equal to the increase in kinetic energy of the slipstream in unit time,

so that
AKE. = P = $wR P Y (U - YY)

Then using the condition of continuity of flow, it was shown that

Up = (Y + 1)
This was one of the most important features of the momentum theory. It
pointed out that the axial velocity of the fluid moving through the propeller
disk was greater than the forward velocity of the disk. It further showed

that the induced velocity at the disk was one-half its value in the ultimate

PP
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wake. This result may also be obtained by a suitable application of Bernoulli's

equation, the continuity equation, and the axial momentum equation. The

efficlency of propulsion was then shown to be

n - TV 2V,
TR T ey

By introducing an axial interference factor a, where
Yp = Y+ a)

it was shown that the ideal propeller efficiency became

1

M= +a)

which is the highest efficlency that can he obtained from a propeller of g}ven
disk area, velocity of advance, and power abscrption. A consequence of this
relation was that the minimum loss of energy for a given thrust occurred when
the thrust was uniformly distributed over the whole disk. This distribution
maintained a constant value of the axial interference factor.

R. E. Froude, in 1889 (reference 4) introduced the actuator disk conceptoﬂ
This concept repreéented the propeller as a disk at which there is a sudden
inerease in pressure withcut a discontinuity in velocity. This may be physically
represented by considering a close pair of contra~-rotating coaxial propellers )
having an infinite number of frictionless blades so desgigned that the
rotational velocity component of the front propeller is exactly cancelled by
the component of the rear for each radial annulus, and that the blade angles are
chosen in such a manrer as to yield a uniform distribution of thrust over the
disk.

N. E. Joukowski, in 1918 (reference 5), and A. Betz, in 1920 (reference 6),
extended the axial momentum theory to the more general case by taking the
rotational velocity component into account. A similer derivation ié'given by

o

H. Glaueit, (reference.l)o It was assumed that the actuator disk introduced a

e~ A — —
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rotational component to the fluid velocity while the axial and radial component
remained unchanged. This further generalization of the theory resulted in
equations which were rather difficult to solve, unless the weke angular velocity
component was known as a function of the radius. Thus, an exact solution could
be realized when the flow in the slipstream was assumed to be irrotational

4 except along the axis. This assumption implied that the rotational momentum
had the same value for all radial elements and further that the circulation

along the blade was constant. Such a distribution was not physically realizable i

since it would mean that close to the axis the wake had a greater angular
velocity thﬁn the blade itself. Consequently the blade was usually assumed to
begin at the radial station at which the angular rotation imported to the siip- i
strea@ was 1dentical to the rotational velocity of the blade itself. For this
particular case it was shown that when rotation of the slipstream was-taken§into
account, the induced velocity at the disk was not necessarily one-half its
value in the ultimate wake. In fact

Up > 'é'(1&5 +V;)

In general since the angular velocity imported to the slipstream was very

TS A T

much smaller than the angular velocity of the propeller blades, it was possible

to simplify the general equations by neglecting certain terms involving the

R L E s R N

square of the wake rotational component. This ylelded results similar‘to the
simple axial momentum theory for the relationship connecting the thrust and
axial velocity. The equations for the thrust and torque of an ideal frictionless :

propeller are given on page 196 of reference 1 and are as follows: «
&T=4wr142(:+a)araor
A0 =4meV,a(1+a)a' v*dr e

where a, the axial interference factor, is defined by

e

U'P = V.;(l-#-a.)
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and a', the rotational interference factor, is defined by
W= 2a'n
where u' is the wake rotational component. The factore a and a' are related by
the expression
Vi ra)a= ¥ (1-a')a’
The efficiency for this case is
. /-a'
= 9+a

The condition for minimum loss of energy when the slipstream rotation was
inclugded, geglecting second order and higher small quantities, was for‘u
distribution of thrust such that the efficiency had the same value rér all
elements. This simple condition applied only to lightly loaded propellers.

The momenxum_theopy'mny be extended to include frictional drag of the
blades and the interference of nearby bodiea.h Rankine, in reference 3, gave an
estimate of these effects.

The great dissdvantage of the momentum theory weas that it gave no indication
of the manner in which the blades should be designed, other than that the
dismeter of the propeller should be as large as possible, _

A classical approach to the problem has been given by Mangler in references
7, 8, and 9. He also used the actuator disk congept in which the rotor was “
replaced by & circular disk with a pressure step across it, Tﬁis implied a
rotor having an infinite number of blades but w=zs a good assumption if the .
rotor blades were driven at a high angular velocity. A second assumption was
made in which it was assumed that the rotor was either lightly loaded or that
the velocity along the flight path was large so that the induced velocities were
small compared to the flight path velocity. It was also assumed that the
induced velocities that were assoclsted with the rotor torque could be neglected.

The second assumption allowed the author to use the linesrized theory as explained
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by Burgers in reference 10. The Euler Equations could then be simplified so that

only linear terms were retained:

_V%—=--P'—GRAD P

where ¥ 1is the vector sum of the three components of induced velocity and p is
the static pressure. Since the continuity equation had to be satisfied, i.e.

div Yy =0
it was shown that

dv eto b = V'p =0

The static pressure function was therefore a potential function and the
acceleration, -Vf'i.x_ was the gradient of this potential function. Then
x

by 1ntegra.tirig the first equation above it was shown that

x

X o l

v - FVI/GRAolex
+o0

The lower liait was taken as +o0 since the induced velocities must vanish

at a far distance ahead of the rotor and the integration was performed for
constant y and 2 « This result applied everywhere but inside the wake since
the integration could not be performed across the disk. However, it was
explained that since the integrated equation was everywhere continiious outside
the dislg and wake, the analytical continuation of this expression could be used
inside the weke if another function ¥ (v,2) were added to it to make the

velocity continuous across the disk. Thus for the space within the wake

X
= g e pdx  f0rw
+90

The wake was not, however, irrotational and a velocity discontinuity existed
at the wake boundaries.

Mangler's solution of the Laplace equation

Vp=0

SE e & .
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- of the rotor disk (i.e. ellipsoidal harmonics). These functions were dis-

12, 12,

followed that of Kinner in reference 1l. This latter paper was originally
intended as & contribution to the theory of the autégiro, but, in order to limit
1ts scope and due to mathematical difficulties, was restricted to the problem
of the solid'flat circular disk. Mangler in a manner simila; to Kinner solved

the Laplace equation in terms of Legendre functions of the elliptic coordinates

continuous between the two faces of the disk but were continuous everywhere
else, It was then possible to solve the inducéd velocity integral equation
but this was difficult and lengthy even for simple distributions. The solution
was then restricted to axially symmetric pressure distributions in which the
load was a function of disk radius only and not blade azimuth position. Three
pressure distributions were used. The first term of the series of Legendre
functions gave an elliptical distribution and the thrust. The second term
gave a moment b;t this term was not used. The third term when combined
linearl& with the first term in a suitable manner gave-a pressure distribution
vhich was zero at the center and circumference of the rotor disk and was a
reasonable approxiﬁation for the load existing on a rotor in forward flight.
The first and combined first and third pressure distributions were the ones
used in the report for the cslculation of the induced velocity perpendicular
to the disk and the vertical induced velocity at a point far behind ‘the disk.
These calculations were tabulated and plotted for rotor angles of incidence

of 0, 15, 30, 45, and 90 degrees.

The results of these calculations showed that the induced velocity
distribution over a rotor disk was far from constant or a linear variation.
Within the limitations of the theory and for the angles of incidence within
the realm of possibility for a helicopter in forward flight, the induced

velocity for the first pressure distributions was directed upward at the front
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and sides and downward over the remainder of the disk. For the combined first
and third pressure distributions, several maexima and minima existed on the disk.
The induced velocity was directed upward at the front and sides of the disk and
downward at the rear hut another area of up flow existed just to the rear of
the center of the disk. The induced velocity at the center of the disk was
equal to zero and was independent of the angle of incidence of the rotor. It
was found that the local peaks in the upwash could be removed by fairly small
alteratibns of the load distribution.

At large distance behind the rotor the vertical component of the induced
velocity was directed downwards near the middle and upwards on both sides and
was symmetrical with respect t¢ the plane 2 = 0. There was a singularity .
at the wake boundary.

In reference 9, the Fourier series representation of the downwash .
distributions for the two previously mentioned pressure distributions were
given in terms of the azimuth angle, rotor radius, thrust coefficient, flight
path velocity, and rotor angle of incidence. Only pressure distributions
having lateral symmetry were considered. This Fourier representation makes the
calculation of the blade motion more convenient. The Fourier series could
also be used to determine numerical values of the downwash distribution ove;
the disk, except at points near the circumference at zero incidence.

The authors stated in reference 7 that the assumption that the induced
velocities were small compared to the flight path velocity "implies a serious
limitation in the applicability of the results."” To define the limits of
applicability, the following criterion was established.

‘o T - aC,-cos"ocv <
C.'. = WR"'{'PV‘ = /‘*V-‘ < |

No indication was given, however, as to the ‘»rder of smallness required to
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fulfill this criterion. For present day helicopters, the value of this co-
efficient falls in the range of about 1/5 to 1/12 with the cruising speeds
falling toward the high end of the range and the maximum speed felling toward
the low end. .

In conclusion, the authors stated that a sound mathematical theory had
been constructed for the induced velocity field of a rotor within the
limitations of the assumptions. They further stated that there should be
no fundamental difficulty in extending the theory to unsymmetrical load
distributions which occur in practice.

An attempt was made by P. Brotherhood and W. Stewart, in reference 12, to
compare the variation in induced velocity along a fore and aft chord of the -
rotor disk as calculated by the theory with the results of a full scale flight
test of an R-4B. The elliptical load distribugion was used in the theoretical
calculation for both O and 15 degrees angles of incidence of the rotor. It was
found that in general, this distribution resulted in values which were higber
(both positively and negatively) than the measured values, particularly over
the aft portion of the disk. The measurements were made for /pg, 's of 0.138,
0.167, and 0.188. The agreement was somevhat better at the higher flight
speeds than at the lower, indicating possibly that the limitations of the
analysis were being exceeded.

In reference 13 by Deughaday and Kline the experimental data indicated -
the presence of some large period;c forces exciting the first, second, and
third bending modes of the rotor blades at multiples of from three to ten times
rotor RPM. These results were in complete contradiction with the theory which
showed that the exciting forces above two per revolution should be negligible.
Since the theory had assumed a uniform downwash, it was decided to use Mangler's

downwash analysis to calculate the generalized forces. The combined first and
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third pressure distributions were used in the calculation. The results of this
analysis, according to reference 13,indicated tha¢ the variation in induced
velocity was prébably the primary source of the higher order exéitation. It was
further stated that the theory was not sufficiently refined to be used ex-
clusively in rotor blade design, in that the designer must still exercise
considerable Judgement in the selection of generalized forces.

Fail and Eyre, in reference 14 mede some downwash measurements behind a
12-foot helicopter rotor in a wind tunnel under simulated forward flight
conditions. The measurements were made in a vertical plane 1.5 rotor radii
behind the rotor center at four spanwise locations. In comparing the theory and
experiment, an allowance must be made for the displacement of the rotor weake
since the first order theory excluded such a displacement. In computing the
theory, reasoning seemed to indicate that the first or elliptic blade spanwiée
pressure distribution would most nearly approximate the loading on the advancing
blade, while the combined first and third terms of the Legendre function, which
gave a pressure distribution that was zero at the rotor center and tip, would
more nearly approximate the loading on the retreating blade. In general, it
was found that the experimental data approximately corresponded to the above
reasoning. In some instances the agreements between theory and experiment were
quite good if allowance was made for the wake displacement. In other cases the
agreement was not good. There appeared to be no correlation between ‘/*V) a(v ,
and spanwise location and the sgreement or disagreement of the comparison. In
fact, some of the better agreements corresponded to flight conditions which
violated the limitation that C.; < < 1l. No measurements or comparisons

were made for the plane of the rotor blades.
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Blade Element Theory

The simple blade element theory was originally .introduced by W. Froude in
1578 (reference 15). This theory conéidered in a crude form, the forces
experienced by the blades as they moved through the air. S. Drzewliecki,
beginning about 1892 (references 16 & 17), took up the devélopmént of this
concept and later published a complete a.nalysisvof the théory (feference 18).
The analysis was based on the premise that a propeller blade may be considered
as made up of many airfoil elements of small span advancing along a helical
path determined by the axial velocity and the rota{;ional velocity of the
propeller. 1Its great advantage was that it yielded the blade geometry but had
“the disadvantage that it required the experimental determination of the airfoil
characteristics and arbitrary assumptions as to the effective aspect ratio. At
this time and for a considerable period thereafter there was much uncertai’nf.y
as to what airfoil characteristics should be used. Drzewiecki propbsed to
d.etemine the airfoil characteristics and 1ntefference effects by a series of
vests on arnum'ber of spegia.l propellers.

F. W. Lanchester, along with his airfoil theory, developed & blade element
theory for propellers in 1907 (reference 19). He attempted to account for the
mutusl interference effects by an anology with an infinite staggered cascade
of airfolls.

The basic assumption of these theories has beeﬁ that the blade element
between & radius r and r + A r of a propeller advancing along its axis with a
uniform velocity and rotating about this axis with a uniform angular velocity,
was considered to be an airfoil element of the same cross-section a.dva.nciﬁg

through the alir with a uniform linear velocity which was the resultant of the

axial and rotational velocities and at an angle of incidence, o, .
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Consequently, the aerodynamic force acting on the blade element was the ssme as

that acting on the aforementioned fictitious airfoil. Then the total force

acting on the blade was the sum of thet acting on each individual blade element.

It vas essumed that there was no mutusl interference between blade elements
except as the interference modifies the characteristics of the blade elements.
According to these primitive blade element theories, the equations representing

the complete solution of the behavior of a propeller are

iT _ + becp Ul( Cp €05 P =Gy 514, ¢P)

Ir

j’;o— = +berp u-%(fl.- s P Cy cos )
vhere . .
Tav ¢ = -.U—_f-

c, = a(e-¢) < -

Cho = Sot &5 7 5:(%“)2

These equations must be grephically integrated for the general case.
The formula for the efficiency of the blade element is V

_ - ETW O
n= | +£ coT g

where £ = %f—'— + Solving for the maximum efficiency, disclosed the fact
that according to the blade element theory, the efficiency of a propeller
decreased as the diameter increased above a certain optimum value which was an
abgolute contradiction of the conclusion reached by the ideal momentum theory.
Another difficulty was that these theories predicted that the thrust and
torque of a given propeller at a glven advance retio should vary directly as
the number of blades, & fact which experimental investigations had definitely
disproved. The conclusion which these discrepancies indicated was that the
primitive blade element theory did not give & complete and satisfactory answer

as regards to the behavior of the propeller.
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Combined Momentum and Blade Element Theories

It was pointed out in ﬁhe previous section that while the blade element
theory predicted the observed performance of propellers in a éeheral way, it
failed to give>accurate numerical resulté. Iﬁ an attempt to reconcile the
theory with experimental results, each of three of the basic assumptions were
critically examined. (See reference 1, page 215).

The first assumption congsidered was the independence of blade elements,
i.e. that the force on an airfoil element was not affected by the forces on
adjacent elements of the same blade. This fact could not be established
rigorously but the effect was. believed to be quite small. However in order to
dispel all doubt, a series of experiments were undertaken by C. N. H. Lock,
around 1924 (reference 20), by which the independence of blade elements was
vérified. |

The next aséumption to be considered was that the effective velocity of

the blade through the air was the resultant of the propeller axial and rotational

velocity. In both England and Germany, it was proposed that the increase in
axial velocity of the air at the propgller disk as predicted by the momentum
theory should be included in the blade element theory. H. Reissner, in 1910,
(reference 21) was the first who tried to combine the momentum theory and the
blade element theory. A. Betz in 1915, (reference 22) and G. de Bothezat about
1918 (reference 23) included in their blade element theories, this increased
axial velocity of the air as determined by the ideal momentum theory. In
England, however, A. Fage and H. E. Collins, in 1917, (referencs 2l) proposed
that an empirical estimate of the increased ax;;l velocity-of the air be
included. This lattér theofy was extended to include the rotational component

by L. Bairstow (reference 25). Another approach to the problem was made by
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R. McK. Wood and H. Glauert, in 1918, (reference 26). They used Lanchester's
concept (reference 19) which proposed that the mutual interference of propeller

blades was analogous to that of a staggered cascade of airfoils. Drzewiecki

PR ek i)

(reference 18) maintained that the increase in axial velocity of the air at the

propeller disk as determined from momentum theory was only an average of a

| periodic flow and therefore should not be used in estimating the force experienced

by the blade element.

The third assumption was concerned with what airfoil characteristics should
be used. All of the previously mentioned blade element theories suffered from
this assumption. Betz,in reference 22,indicated that the aspect ratio of the
propeller blades tended to be infinite but depended also on the blade shape.

Fage and Collins, in reference 2&, used an aspect ratio of 6 and attempted to

correct the theory by an empirical inflow velocity. Drzewiecki and de Bothezat
proposed special propeller tests to determine the required airfoil characteristics.
The main difficulty was that the variation of the airfoil characteristics with
aspect ratio weas still undetermined at that time, both from a theoretical and

experimental viewpoint.

H. Glauert ir 1922, (reference 27) developed s combined axial momentum and

blade element theory in which he indicated that to be consistent with the

assumption of the independence of blade elements, the airfoil characteristics

must be taken from tests in which the sirfoil elements experienced no interference
from adjacent elements, that is, infinite aspect ratio tests. This analysis was
later extended to the case of the helicopter by Glauert (reference 28, 29, and

| 30), C. N. H. Lock, (reference 31), H. B. Squire (reference 32) and many others.
These references gave essentially the same analysis which is used today for

helicopter performsnce and design. .
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After the first successful flight of a helicopter, it beécame.obvious that
these theories and their assumptions were not adequate for predicting the various
vibrations and blade motions encountered. In attempting to refine the theories,
the attack was directed toward finding a theoretical method of predicting the
variation of the induced velocity across the rotor disk which was more real-
istic.

Several suthors have mede use of the combined momentum and blade element
theory in this field with some success. R. S. Ross (reference 33) set up the
general equations determining the airflow beneath helicopter rotors using these
classical concepts as applied to an elementary disk annulus. An expression was
obtained for the blade span loading in terms of the local induced velocity and

the local 1ift-drag ratio. For hovering the expression became

cbe 17.77 p* -

v [1- €D + [i-2ep -7 )%
2v
vhere D = S
ere D o
Cdo
£ N

In order to solve this equation, three charts were prepared as follows: 1. the

particular sirfoil charscteristics, ¢, and £ versus angle of attack; 2. 'a

be
plot of the design coefficient S%r— or span loading versus Ii:, for various

lift-drag ratios, 3. & plot of inflow angle ¢ versus velocity ratio f%%: for

 various lift-drag ratios. Then by assuming several values of ¢; , a value of

the locsal induced velocity could ﬁe determined from the intersection of two ¢

av
ar

could then be determined from the equation

yv v, +4EV LY
R (M 2 ]

versus curves for the particular radius. The rotational component, h',

. e
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Actual velocity meadurements were made with a hot wire anemometer underneath a
model rotor in hovering flight and compared with theory. 1In general good results
were obtained over the inboard center portion of the blade for both velocity
components but comparison was poor toward the tips and close to the root.

The design formula was modified to account for horizontal flight with the
rotor horizontal and then further modified to include either hovering, vertical,
or horizontal flight. Although velocity measurements were also made for the
horizontal flight conditions, there was no comparison with theory. Flight
records indicated the pulsations or periodicity of the i:low that occur in

horizontal flight.

W. Castles and A. L. Ducoffe (reference 34) derived an expression for the
distribution of the induced velocity across a rotor disk in hovering flight as
a function of the thrust at that redius and of a semi-empi; .cal consta.ﬁt, k,_
to account for the viscous shearing force in the flow. The thrust on an
elemental annulus as determined from momentum considerations was equated to
the 1ift on the portion of the blades lying within the annulus as determined by

blade element considerations. This yielded an induced velocity distribution.

- T / e k
&

Ve T cos o
vhere of; is the wake angle of each annulus stream tube at the disk. Using this
value of the induced velocity, the induced angle of attack of the blade was

determined. Then using the relation G .= (v — @, ) and the determined
¢,
relationship @, = Eléli , the local lift coefficient for each blade

element could be determined. The thrust and torque integral equations were then

g
i

set up for any twist, taper, or planform. These integrated equations gave
results which were in good agreement with the available experimental data. The

factor k was determined empirically from experiueninl data. A similar analyses

o DRI A e 306
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vwas made for hovering within ground effect.

As pointed out in the previous section there were several inconsistances
and contradiction between the ideal momentum thecries and the blade element
theories. One inconsistancy was that in direct opposition to the ideal
momentum theory which indicated an upper limit to the efficiency of a propelller
depending only on the disk loading for a given advance ratio, the blade element
theory indicated that the efficiency approached 100% as the drag of the blade
approached zero. Furthermore, the primitive blade element theory indicated
that the efficiency of a propeller dacreased as the diameter increased above &
certain optimum value which was an absolute contradiction of the ideal momentum
theory which indicated that the efficiency should increase with diameter for a )
given thrust. The rigorous reconciliation of these two theories awaited the

development of the vortex theory.

0
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Vortex Theory

i . The fundnmental bases of the vortex theory were the Lanchester-l’randtl-
Joukowski cinception of the vortex system, the Kutta-Joukowski theorem, and
o Praolitl's airfoil theory. The Kutta-Joukowski theorem stated that the 1ift of
o;n airfoil vas determined by the circulation existing about its contdur.

That is, that the 1lift per unit length of span in & two dimensionn.l flow was
given by the product of the circulation [ about its contour , the density @ of

the fluid, and the uniform velocity U of the airfoil through the fluid, namely
eur

The concept of this circulation about the blade led to the concept of the
bound vortex or lifting line and as a conéequence to the free vortices which
are shed by the blade and pass down stream in @ helical pattern forming the
slipstxzeun. "This type of slip-stream configuration was apparently first
recognized by F. W. Lanchester around 1900 and was later published in 1907 in

reference 19. N. E. Joukowski investigated the induced velocity resulting

B ,

from this type of vortex system in 1912 (references 5 and 35) but in order to

i reach a solution was forced to assume that the blades were lightly loaded and
| of infinite number. This resulted in a theory identical to the momentum theory
, 28 to the axial and rotational induced velocities but Joukowski went further
[ and suggested using an infinite aspect ratio cascade of airfoils to obtain
the required airfoil characteristics.

A. Betz,in 1919 (reference 36),a.pplied Prandtl's elliptic loading airfoil

theory and showed that a propeller of given thrust and power had & minimum loss

of energy and highest efficiency if the shed vortex sheets after an initial

limited distortion, moved backward as a rigid screw surface (i.e. constant

e
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axial velocity). The application of ;this theory to a propeller was not simple,
but the problem was capable of being solved if the propeller was assumed to
have an infinite number of lightly loaded, frictionless blades. L. Prandtl, in
an addendum to reference 36, indicated an approximate method for correcting

the results for a propeller with a finite number of blades. In this case
instead of & uniform distribution of vortex sheets implying no gap, there was
nov a system of vortex sheets with a gap, S , depending upon the angle ¢, of
the screw surface at the boundary of the slipstream.

S = .a_Pb._B_Sld¢,

where tan ¢ = .(%%‘ and b is the number of blades. Whereas before there was
zero slipstream contraction and the radial velocity component was negligible,
there is now an appreciable radial velocity at the boundary of the slipstream

as the air attempts to flow around the edges of the vortex sheets. Prandtl
replaced these vortex sheets by a system of semi-infinite plane surfaceg of

zero thickness and gap, S , equal to that of the actual vortex sheet. The flow
about this system of planes was determined for the case of & uniform motion
downward at right angles to the planes. Using the solution to this system, the
flow sbout the vortex sheets could be approximately estimated. A graph of the
approximate correction factor as a function of the number of blades and advance
ratio is given on page 263, reference 1. S. Goldstein has developed a more
accurate analysis of the problem of a finite number of blades by the use of
Bessel functions (reference 37). This was a rigorous solution of Betz's

optimum condition but assumed zero slipstream contraction. Hence it is directly
spplicable only to lightly loaded propeller. Goldstein's method has been
extended to the general case by Lock, reference 38, These theories are

applicable to & helicopter rotor only for the special cases of hovering flight

and vertical sscent. A brief summary of Lock's theory will be given here.
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A more complete form of tﬁe derivation may be found in reference 39.
Goldstein showed that the circulation distribution along the blades of a
propeller was (according to his assumptions)

= 2 W')( znr w ¢,

vhere 2 W' is the velocity of axial translation of the rigid helicoidal
surface; K is a non-dimensional function @, » the ratio % »
snd the number of blades b, and 9, is the angle that the helical surfaces
make with the propeller disk plane. It was then shown that

1 2V
2W = prar

and hence

,"ﬁ*‘__ 2V K . Ny TAN ?,
- Costtp. - b
K
cos? @,
represented the circulation loss along the blade. Thus

- , YTYV TN?,
M=K T

Lock replaced the factor by a new coefficient A  which

Using the Kutta-Joukowski theorem that
P=4eqcl
and solving for the sxial induced velocity, v , gave

beo, U
Smwy X v

v =
The rotational component was then

- v
T os g,

The expression for the distribution of thrust and torque along a single blade

were
5—; =% {ocUz(cl cos @, - Cdo S <P,)
yif :-ZLGCUL(CISI:V ¢, + G4, cos ﬁ)
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The solution of these equations required that a valﬁ; of q% be assumed for each
; blade station considered and by trial and“error, finding the distribution of ¢,
% vhich gives the desired integrated value for the thrust. This is at best &
rather complicated solution though the results compare very well with experi-
ments.

M. Knight and R. Hefner,in 1937 (reference 40) using a vortex system
similar to that of Joukowski (reference 5) and Glauert (reference 27) spplied
this concept to the lifting rotor. The basic assumptions employed were the same
&5 those of the latter two references and were as follows: tﬁe number of bliades
was taken as infinite; the induced angles were small so that the sine and
tangent were equal to the angle itself in radians;and the rotational and radial
components of velocity, tip losses, and slipstream contraction were neglected. :
Each blade was replaced by & rotating lifting line. The trailing vortices which

sprang from the tips formed & helix in space while the vortices from the root

became concentric with the axis of rotation and were neglected. The problem

thus was reduced to finding the normal component of the velocity which was

induced at the rotor disk by a cylindrical surface of vorticity.

Lk A aaind

In order to simplify the analysis, the helical pattern of vorticity was !
broken up into two simpler patterns. One was composed of circular vortex rings

! and the other of axisl vortex lines, both together forming a right circular

cylinder of vorticity extending from the rotor disk downward to infinity. !

However in this analysis, the latter pattern was negiected. The analysis makes

use of the fact that the potential 1; at & point P due to a closed vortex

¥ XTTT ey o870 Tt

[
ring is directly proportional to the product of the circulation [’ and the

solid angle w subtended by the vortex ring at P.
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The solution of these equations required that avalue of ¢, be sssumed for each
blade station considered and by trial and error, finding the distribution of $,
vhich gives the desired integrated vulue‘ for the thrust. This is at best a

rather complicated solution though the results compare very well with experi-
ments. ) !

M. Xnight and R. Hefner,in 1937 (reference 40), using a. véfte;t system L
similar to that ofi Joukowski (reference ‘5) and Glauert (r&ference 27) spplied
this concept to the lifting rotor. The basic assumptions employed were the same
as those of the latter two references and were as follows: 'tée number of blades
was taken as infinite; the induce& anélea were small so that the sine and
tangent were equal to the angle itself in radians;and the rotational and radial
components of velocity, ﬁip‘los‘ses » and slipstream contraction were neglected.
Each blade was replaced by a rotating lifting line. The trailing vortices which
sprang from the tips formed a helix in space vhile the vortices from the root
became conceutric with the axis of rotation and weres neglecﬁd. Tha.problem
thus was reduced to finding the normal component of the velocity which was
induced at the rotor disk by a cylindrical sﬁrfa.ca of vori;icity.

In order to simplify the analysis, the helical pattern of vorticity was
broken up into two simpler puttexjns. One was composed of circular vortex rings
and the other of axial vortex lines, bot_'.h together forming a right circular ’
cylindsr of vorticity extending from the rotor disk downward to infinity.
However in this analysis, the latter pattern was neglected. The analysis makes
use of the fact that the potential &  at a point P due to a closed vortex

ring is directly proportional to the product of the circulation [ ' and the

s0lid angle w subtended by the vortex ring nt P.
r.,e
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or using the differential equation for eloﬁnmy vortex rings
R L LI
Er LA )

This equation was then integrated along the cylinder from 2 = 0 to % and
then differentiated for the induced velocity at the disk. It was then shown

that for a constant circulation
_ 1. dr
v S 'J;- = constant

where —)“—E- is the circulation per unit length along the cylinder. It was
also shown that the induced velocity in the plane of, but ‘outside of the rotor
disk was zero. Furthermore, it was shown that the veloc:fty in the ultimate
wake is

dr
=TI

thus coryoborating the momentum result. By neglecting hi‘.gher order infinites-
imals and assuming & variation in circulation along the blade, it was shown
that within the limitations of the assumptions, the independence of blade
elements held.

Theae‘ results were used to derive an expression for the inrlowra.ngle and
hence to predict the 1lift and torque on a blade by means of the usual xi:ethods.
The resulting thrust and torque equations compared favorsbly with experiment.

Knight and Hefner also made s somevhat similar snalysis of a 1lifting air-
screvw in ground effect (reference 41). All the previous assumptions were
assumed to h.c;ld except the independsnce of blade elements. An additional
a.lsa\mp.f.iox; vas made in order to reach an a.pproxinﬁfe solution. This was that
the circualation along the airscrew blades was constant; i.e., it was independent
of both the blade radius and the distance above the ground plane. The vortex
system was the same a3 in their previous paper, except tﬁn.t the vortex cylinder

extended only to the ground plane. The effect of the ground pin.ne was
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represented by placing a second cylindrical vortex sheet of equal length and
strength but of opposite direction at the end of the first cylinder. Thus the
second became a mirror image of the first.,

The suthors solved for the value of the induced velocity at the center of
the rotor and at the tips and showed that the solution at other points was
extremely difficult and tedious due to the presence of elliptic integrals of the
third kind for which no tables were available. Methods of approximation were
tried and Simpson's rule yielded satisfactory results for values of % < 2,
except neaxr the tips, For larger values of —fg or as X -» R, this method
required the computation of a prohibitive number of ordinates. It was then
shown that the calculated results compared satisfactorily to the experimental
data.

R. P. Coleman, A. M. Feingold, and C. W. Stempin utilized the vortex
theory in their analysis (reference 42) of the longitudinal veriation of the
induced velocity across & rotor disk in forward flight. The study was under-
taken in order to find a reasonable explanation for the vibration encountered
by helicopters in slow speed forward flight. The simplified vortex system was
also used as & conception of the rotor wake. In this instance the wake pattern
was assumed to form an elliptic cylinder skewed with respect to the rotor axis
at an angle depending upon the forward velocity and the induced velocities. It
was also assumed that the rotor consisted of an infinite number of lightly loaded
blades with .constl.nt circulation and that the helical vortex system could be
replaced by a series of circular vortex rings whose plane remained purallel to
the rotor disk, and a series of axial vortex lines.

In order to find the wake skew angle A , the induced velocity components
parallel and perpendicular to the wake axis were a.ssx'.unzd to be constant. Then

by taking the line integral of the velocity around sultable paths, it was shown

-
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that the ratio of the induced velocity component perpendicular to the wake axis

‘7 B »‘uj -
-_—

£
<o

in the direction of forward flight to the induced velocity component parallel

to the wake axis was equal to the tangent of half the wake angle.
By applying the Biot-Savart law, it was shown that the velocity

distribution normal to the disk induced by the assumed vortex wake was given

N T

by a double integrsl equation. This equation was solved at the center of the
disk and the value obtained was then shown to be the avarage scross the fore- !
and-aft dismeter. Furthermore, it was shown that this value was half the i
component of the ultimate wake induced velocity which was perpendicular to the B

rotor disk. The fore-and-aft rate of change of the induced velocity was found

by differentiating within the integral sign and evaluating the resultant

integrals at the center of the disk. It was found that

V.2V T

= ey T i pb Y, s M

vhere \". = rate of change of induced velocity at the center of the disk, VvV,
average value of fore-and-aft induced velocity at the center of the disk, and ;;
X = the wake skew angle. '
The results were combined with Glauert's theory of reference 28 and an
expression was arrived at for the induced velocity at the center of the disk
in terms of the flight velccity and required thrust. A comparison vas made
with some experimental dats and the suthors concluded that this comparison

indicated that the most significent factors had been taken into account. '

In reference 12, the results of this analysis were also compared with the ;
experimentally determined induced velocities. In this case the measured values
of the induced velocities at the center of the disk were somewhat lower than
the calculated values for all three flight speeds. The experimentally determined

slopes of the induced velocity variation were all higher than that yielded by

T
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the analysis. The theory appeared to yleld a better con;pa.rison at the lower
flight speeds. No definite conclusions were reached, however, since the
experimental induced velocitiss were not d’et:zé'nnined for the fore-and-aft
diameter, and since some lateral asymmetry was supposed to exist.

In reference 13, as ctated in.a previous éeqtion, large periodic. forces
were found to exist on rotor blades in forward flight which excited the first,
second, and third bending modes of the rotor blades &t frequencies of from
three to ten times rotor frequency. As before an effort was made to
theoretically predict these forces, and the linear downwash distribution of
Coleman, Feingold, and Stempin was incorporated in the theory for finding the
generalized forces. It was found that the Joading terms which were directly
affected by this type variation were the: first harmonic cosine loading @d the
second harmonic- sine loading. The remaining higher order harmonic loadings
were proportional to vlade flapping coefficients. It was shown that this
linear induced velocity distribution had a minor effect on all blade flapping
coefficients except the first harmonic sine coefficient. A comparison was mede
of the theoretical generalized forces and the test data. It wis found that fair
agreement was obtained at higﬁ tip speed ratics, but ‘the ;.na.lysis wes not
caph.bie of explaining the peaks in the generalized forces in the transition
regi-.oizi.‘ |

Drees (reference 43), by using the vortex concept of the 1ifting rotor,
has develc"p;:d a theory which is applicable to a1l flight conditions but was
still limited.to e pieat'extent by the nécessary assumptions for the solution
of the I;rdiiem. In hié pai:er ’ ‘the usual sssumptions were made: i.e.
conﬁ"action and fotation 6f v.sl'ipstream was rieglected, number cf rotor blades

was infinii:.e » c¢irculation was constant along the blade radius, and the sngle

between ‘the slipstream and the rotor disk st each poiht of the disk was constant.
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Although it was assumed that the circulation along the blade was constant, it
vas quite obvious that in forward flight, the circulatioixs,must vary with the
szimuth angle ¥ . It was then assumed that the circulation could be written

rsn-"I swy

Values of [ o and F, )y were found by equating the constant portion of the
lift to the weight and by setting the condition that the lift moment about the
flepping hinge must be constent and independent of ')" « Then by neglecting

second and higher harmonics it was shown that

M= 2 W
° T prart(i-1a7)

no=3insl
The axial velocity was teken as being composed of the following components:
the component of the flight velocity perpendicular to the tip path pléne; the
component due to the bound vortices around the blades; the component from the
free vortices moving with the slipstream and springing from the blude tips
c;nly, since r is aasumed constant along the ra.dius ; and the component from the
free radial vortices influencing the axial flow which compensates for the
 variation of [ with respect to “l’ o The induced veloc;tiea were calculated
only for the X and Y axes at the 3/&- radius station and at the rotor center.
A more accurate solution was considered impractical in use and not in accordance
with the other simplifications. For performance calculations, a ce‘rta;tn
velocity distribution was assumed to exist through these points as a function of
the radius and/or as & first harmonic function of the azimuth angle, ¥ .
Terms of higher than the first order were neglected. ‘

The induced velocity of the bound vortices was arrived at by means of the

following ressoning and by the usual mathematical solution for a finite vortex

-—
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line. Tt was reasoned that, since | was symmetrical to the Y axis, it could
have no influence on the axial velocity across 'a‘ iatera.l diameter of fhe disk

and, for the same reason, r; could have no influence on the axisl velocity

along the X axis or longitudinel dismeter of the rotor disk. Thus only F,

gave an sxial induced velocity componenf) along the X axis. The solution of

the mathematical relationships involved complete elliptic 1ntegrai “equations.

Assuming the component of the induced velocities due to the bound .vortice‘s to

be a cosine function, these equations yielded for the 3/1+ radius station
v*:-n 2 -0.6% cos ¥ .

The camponent of the induced veloclty due ﬁo the f; circulation
component of the free tip vortices was :t\_'oungl in the usual manner by assuming
that the shed vortices formed closed vox;tex rings parallel to the tip path
plane. Two inte-gra.l equations were arrived at for the velocities along the
longitudinal and lateral rotor diameter, but the integration while possible,

- was very complicated. These equations were, however, integrated for the rotor

center and ylelded

m _ blo  swocyg

vhere o, is the angle between the slipstream and the pérpendicular to the

tip~-path plane. When the equations were solved for o« =0 , they ylelded )

an axial induced velocity which was constant for each point of the rotor disk. .

AT 3 gy, ) ..
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This was in agreement with the results of 'previous papers, which showed that

the assumption of constant circulation along the blades gave the ideal axial
velocity distrivution in hovefing. The two integral equations were also
numerically integrated for tlie 3/1& radius stations on both longitudinal and

lateral diameters. Then assuming a cosine variation, the result was given as

” "Lr ) &
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or in another manner

P ‘
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The determination of the axial induced velocity due to the free radial-

vortices and tip-vortices was more difficult. Since I variea cyclicly, a
free axial vortex of ¥ J [ was released and the free tip vortex also varied

A « These vortices formed a surface. Using these actual distributions
of circulation resulted in a very complicated calculation for the component at
the 3/1& radius station. In order to arrive at a solution, it was necessary to
resort‘ to a simple analogy. The radial and tip vortices were taken togethexz
and assumed to form two circular cylinders. That is, the actual circulation
distribution was replaced by the vortex ;ystem of two hypothetical rotors.
These rotors had their axis on the lateral diameter of the actual disk. The
cylinder at ¥ = 90° had a strength of = |, , while the cylinder at
'f’ = 270° had a strength of + I',‘ +« These systems compensate on the
longitudinal diameter and hence cause no variation in the induced velocity.
Then in a manner similar to that of the free constant tip-vortices, the induced
velocity component at the 3/4 radius station and assuming a sine variation was

shown to be

an - - b n . sV xi
v‘“ iy Ls 5w+,

All the above components were added together to yield the total axial
induced velocity. The equations were then non-dimensionalized but were not
valid for ideal vertical autorotation when the airflow through the rotor disk
approached zero. The theory ‘:xas then changed in a semi-empirical manner to

include this flight condition. A formile was arrived at which was valid for
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all flight conditions but had three constant coefficients which must be

determined from flight and wind-tunnel tests. A correction for the deviation

of the actual from the ideal uniform induced axial veloclity was included. A
chart was then presented which is valid for all kinds of one-rotor helicopters
and autogyros and all normal spéed combinations. The paper concluded with the
equations for the determinations of oC, , the attitude sngle of the fuselage
and a,, , the angle between the rotor axis and the perpendicular to the
tip-path-plane. Applications of the theory to several problems were given.
Perforqnnce calculatinns were made for the Sikorsky S-51 and the theory pre-
dicted the experimental data to a good degree; of accuracy.

W. Castles, Jr. and J. H. De Leeuw, in reference hli, presented a method
for computing the approximate values of the normal component of the induced
velocity at points in the flow field of a lifting rotor. In this paper the
assumption was also made that the slipstream'of the rotor could be considered
as a uniform cdntinuous distribution of vortex rings of infinitesimal strength.
These rings were assumed to lie in planes parallel to the tip path plane and to
form a straight elliptic cylinder extending from the disk to infinity. Then i
by using the stream function at a point P in the flow field of a vortex ring,
expressions were arrived at for the axial and radial components of the induced
velocity. These expressions were rather complicated since they involved the

complete elliptic integrals of the first and second kinds and were given as .

follows:
- - r .
v, = TN (AB + CDF‘)
v, =-;_—5%72—(Ae'+ COF')

where the terms within the brackets are functions of the complete elliptic
integrals and non-dimensional distances of the point P from certain references.

These terms are defined in the original paper.
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It may be seen that the expressions become indeterminant for X =0 (rotor

center). It had been previcusly shown that for ﬁiis cq.sé_

V) =— == —
(Rl 2w | v |

The above expressions were revritten in non-dimensional form. The factor,
:-#_;3— the non-dimensional normal component of the induced velocity in the
vicinity of a vortex ring appeared on the left side of the expression and the
right side of the expression became a function of the geometry of the problem;

i.e. the distances of the point P from the center of the ring. Numerical

Vo R
r

dimensional axial and radial distances from the center c¢f the ring. The intervals

values of this factor were calculated and tabulated for varilous non-
were so chosen that numerical integration by Simpson's rule could be accomp-
lished. Then using the resulting table, the normal component of induced velocity
at a point P in the vicinity of a rotor whose wake was composed of these rings
could be found by adding up the contributions of each vortex ring covered by
the table. This would account for about 95% of the total induced velocity
component at the center of the rotor and for a large part of the component for
most points considered by the paper. The contribution of the rings outside the
scope of the table were summed by using an approximate integral equation c;pable
of solution which was said to introduce small error. Thus an expression was
axrrived at for the contributions of the vortex rings from the limits of the
table to infinity. This expression was a function of the geometrical position
of the point under consideration and the wake angle of the slip-stream at the
rotor.

The results were presented in the form of tables and graphs of the ratio
of the normal induced velocity component at point P to the normal component

of induced velocity at the center of the rotor.
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A method was then given for the determination of the mean value of the normal

component of induced velocity over the front and rear rotors of a tandem

helicopter; for the determination of the 1ongitudine.l~ variation of the normal

component of the induced velocity over the front and rear rotors of a tandem

helicopter and for the determination of the induced flow angle at a horizontal :
tail plane.

In conclusion, the authors of the paper stated that for the high speed

forward flight condition, the assumption that the vortex ..ngs remain parallel
to the tip path plane was the only one likely to affect the engineering
accuracy of the results, Whereas for the slower speed case, the initial

assumptions as to the vortex ring spacing and circulation distribution. along

the blades would affect the accuracy of the calculations. They therefore
advised exercising caution in applying the theory te points on or close to
the disk of a specific rotor at low forward flight velocities. No

o - comparison with experiment was made.,
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Flow Visualization Studies “

There have bheen many experimental investigations which have studied the
air flow through and around both propellexrs and helicopters. Most of these
have dealt with models, though a few have used full scale helicopters under
actual flight conditions. The purpose was to gain s more accurate knowledge
of the flows, with the thought that if the actual flow were understood,
perhaps the theory could be improved either by incorporating simplifyiﬁg
assumptions in the mathematics or by devising an empirical method. The results
were also used as a check on the applicability of existing theories.

There have been four methods of flow visualization employed: cotton tufts,
smoke, balsa dust, and hot wire and spark shadowgraphs. From the available
experimental results, the following general conclusions may be drawn. Of the _
four, the cotton tufts seem to be of least value, since they suffer z great
deal from gravity and flutter, particularly in the rotor wake. Sinoke photo-
graphs appear to yleld better results for streamiine study, while balsa-dust
photographs appear to yleld a better overall picture of the flow. The hot
wire and spark shadowgraphs appear to be the better method for studying vor;bex
and wake helix patterns because the heated filaments of air do not appear to
dissipate too quickly. Some examples of these methods as applied to
propellers and rotors are reviewed in the following paragrsphs.

Lock and Townend, in reference 45, investigated the flow around a model
propeller working in water in the "vortex ring state." The model propeller
was of extremely small scale having a diameter of one inch. Ten photographs
were presented including views of the flow conditions from the normal working
state through the static thrust condition to the vortex ring and windmill

brake state. Lock, in reference 46, repeated these tests using a three foot
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dismeter sirscrev in a windtunnel with cotton tufts as the means for flow
visue.ization. Twelve photographs were presented covering the various states
as listed above. The photographs ciearly showed the extreme turbulence which
exists about an airscrew in the vortex ring state.

Townend, in reference 47, used hot wire and spark shadowgraphs in a stﬁdy
of the periodic airflow through a propeller. The use of the spark shadowgraphs
enabled the velocity and the direction of flow to be mapped out. The
shadowgraphs of ﬁhc hot wire tests very clearly showed the radial flow that
exists in the slipstream. The heated air filaments were broken by the blade
and this break passed downstream as a discontinuity, the particle that passed
Just under the blade moved outward while the adjacent particle which had
passed just over the blade moved inward. This discontinuity repreéented the
helicoidal vortex sheet left behind by the blade. The filaments also very
clearly showed the tip vortices which were shed and their spacing. The ceqters
of these "eddies" as they appeared in the shadowgraphs represented the slip-
stresm boundary. The heated dots formed by the injected sparks were intro-
duced near the blade tips. The resulting shadowgraphs showed very clearly o
the formation of the trailing tip vortices. The high velocities which existed
in this region were indicated by the elongation of the dot shadows. These
photographs are an excellent though brief study of the periodic flow existing
behind an airscrew.

Brotherhood, in references 48 and 49, and Brotherhood and Stewart, in .
reference 12, investigated the air-flow through a full scale helicopter rotor
in various free flight conditions. Velocity measurements were made and pictures
were taken of the various flow patterns formed by smoke streamers. Reference
48 is an investigation of the air-flow through a helicopter rotor when hovering

both in and out of ground effect. The smoke visuslization of the streamlines
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vas used to refer back to their sppropriate disk positions the velocity measure-
ments which were tsken in the fully developed slipstream. The experimentsl
measurements agreed very well with that predicted by propeller strip theory of
reference 1, if tip losses were taken into account. The smoke filaments gave

& good indication of the streamline pattern in the slipstream. Reference 49
was an investigation of the air-flow through a rotor in vertical descent.

Smoke filaments were introduced below the rotor at several radii. The pictures
of‘ the smoke pattern in vertical descent clearly indicated the various types

of flow associated with the rotor as it passed through the vortex-ring state
into.the vindmill-brake state of operation. There was very good agreement .
between the rates of descent corresponding to autorotation as obtained from the
smoke photographs and from power considerations. Reference 12 has been
previously discussed. It presented smoke photographs of the flow through a
rotor in forward flight. The helicopter wi.s flown behind an aircraft Vhich )
was trailing smoke generators suspended from & long wire. The smoke trails
passed through the rotor and were photographed from the side by another air-
craft. The resulting photographs indicated the increase in induced velocity
from the front to the rear of the disk. The results were in reasonsble agreement
with theoretical predictions.

Taylor, in reference 50, developed and illustrated a balsa-dust technique
for the visualization of air-flow patterns through model helicopt._er rotors both
in steady-state and transient-flow conditions. Some very striking photographs
were obtained, particularly of the starting vortex shed from the blade tiﬁs
while the rotor was brought up to speed from rest, both for single and cosaxial
rotor configurations. Photographs were also given of single, coaxigl, and
biaxial (with varying degrees of overlap) rotor configurations in and out of

ground effect. This method illustrated the oversll flow picture very well.
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Drees and Hendal, in reference 51, photographed the flow of smoke filaments
through and around a model heliccpter mounted in 2 wind tunnel under various

flight conditions. A method was devised for introducing smoke at the exact local

velocity. The smoke could be turned on and off instantaneously, was non-

corrosive, and was easily regblo,ted:f - Photographs of f.he smoke flow were made
for hovering flight and various rates of vertical descent through the vofte:_c-
ring state into the windmin-b;;ke state. In general the turbulence was so
great &s to completely dissipate the smoke filaments after they had passed
through the rotor. An interesting series of photographs showed a marked
periodicity of airflow pattern for descending flight at lcw forward si)eed, the

helicopter being in the vortex-ring state. This corresponds to the region of

‘roughness. The model helicopter rotor was observed to "tumble" regularly with

the same period as the shedding of the vortex ring. At higher forward speeds,
the phenomenon disappeared. For autorotation in forward flight » the photo-
graphs showed that there was up flow in the front part of the disk, but that
near the rear, there was a region of downflow.

Meyer and Falabella, in reference 52, have measured the aerodynamic
loading on a model helicopter blade in forward flight by recording the pressure
variations by means of pressure taps, positioned both spanwise and chordwise
on the blade. The results have been plotted as curves of constant aerodynamic )
loading versus position on the rotor disk. This reference would yield

excellent data for checking any future theory.
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Discussion

As may ber ‘seen from the Treviews presented in the preceeding sections,
simplifications of the physicalv picture were necessary in order to obtein
solutions for the induced velocity field. These asswptions and their effects
will be discussed below. '

The primary and perhaps the most universal assumption is that the rotor is
made up of an infinite number of blades. In the vortex theory this implies zero
slipstream contraction since the resulting weke boundary may then be taken as a
cylindrical sheet of vorticity for which there can be no radial flow within the
wake. In these cases the additional assumptions are usually made that the
circulation along the blades is constant and that the effect of the vortices
shed off the blade root may be neglected except insofar as it results in a —
rotational component of induced velocity about the wake axis. In the momentum
theory, this assumption implies that the rotor may be replaced by a pre-ssure _.
step, the distribution of which must either be assumed or solved for with the
aid of other simplifying assumptions while the velocity remains continuous
through the disk. An extension of this concept is that of the actuator disk
in which the rotor is replaced by a pair of infinitely bladed, contra-rotating
tandem rotors so designed that the rotational component of induced velocity of
the front rotor is ;xactly cancelled by the rear rotor. The result of the
assumption of an infinite number of blades yields an induced velocity vgr:@a.tion
which is8 not periodic. For fast-moving multi-bladed propellers and rotors this
would sppear to be & good assumption but for large-diameter, slow-moving rotors
with only one or several blades, the assumption would sppear to be rather poor
even for performsnce estination.

The second usual sssumption is that the blades are lightly loaded. This may

also imply seversl things. One is that the sl.ipstremﬂwcontraction may again he
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neglected which means that the inflow velocity must be very small compared to the
rotational velocity component of the bhblade section. Another is that in forward
flight, the velocity alohg the flight path is large compared to the induced
velocities and hence the theory may be linearized. This assumption may result
in a ressonable spproximstion if care is taken in interpreting the limitation

of smallness. At present this limitation is not clearly defined.

The sssumptions that the slipstream contraction and rotation may be
neglected while in error physically appear to have little or no effect on the
results of the vortex theory as compared to performance data. However, the
former is obviously incompatible with the momentum theory while the latter
probably has a smell effect. -

The sssumption of a constant circulation along the blade span axis has
been a necessary assumption in most vortex theories. (The exception being

Goldstein's theory.) This distribution is theoretically obtainable by the

proper twist nnd/or taper of the blade but this is not practicable. In practice ’

the actual circulation distribution 15; quite different from the assumed constant
value. |

It has been shown experimentally by Lock in reference 20 that the
sssumption of the independence of blade elements in the blade element theories
is a reasonsble approximation and yields good results.

Goldstein's theory in reference 37 and as modified by Lock in reference 38
employed only one of the assumptions stated above which was that the blades mp.st
be lightly loaded, though this later was shown to be an unnecessary condition.
The basic sssumption of the theory was that the wake was pictured as composed
of a rigid helicoidal surface (or co-axial surfaces) of infinite length but
finite radius moving with a uniform axial velocity which was small compared to

the rotor hlade tip speed. Then the velocity field of the vortex system at a
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great distance behind the rotor was equivalent to the potential field of thesé
rigid helicoidal surfaces. The conditions existing in the wake were then related
to the rotor planform. The solution is, however, only rigorously correct for
rotors whose distribution of circulation along the blades will yleld a flow in
the wake that is identical with the potential flow of such a set of rigid
. equidistant co-axial helicoidal surfaces. It appears that the theory may be
> applied with small error to the general case of a hovering or vertically
ascending rotor. This is the only theory, with the exception of Prandtl's
tip loss correction (reference 36), that takes into account the interference
effects of a finite number of blades.
In all cases the working medium was assumed to be an incompressible, 1
inviscid éu.s. ., \
In the .mn.in, these assumptions which-have been discussed appear to be |
ressonably well founded because the resulting performance theory predicts the

overall experimental data to & good degree of accuracy. However, when these ;

theories are applied to the calculation of the dynamic air loadings on the
blade for blade motion, vibration, and stress analyses, it becomes apparent
that they are woefully inadequate (for instance, the efforts of Doughadsy and
Kline in reference 13). It would therefore appear to be worthwhile to attempt ?
to extend the present theories or to find another solution to the problem \’
¢ which is not as greatly limited in its applicability. One of the primary ri
obje;:tives of such an attempt would be the incorporation of the effec'j; of the |
periodicity of flow and the interference effects of a small number of blades.
The neglect of these effects may be the cruse of the major discrepancies !

sppearing in the present theories.

The search for a general solution has been almost completely thwarted by B

the ;l.ack of suitable mathematical tools. This deficlency has made it necessary
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to so simplify the true physical picture that many of the practical uses which

could have been derived from the results have largely been lost. It is obvious

from the reviewed papers that men of stature have grappled with the problem and
have met only limited success, not through lack of effort or intelligence, but

because of the limits of mathematical knowledge. The author of this paper does ‘
not presume to have the ability to extend these mathematical limits. However,

with these thoughts in mind, a program of investigation has been laid out

vhich should result in some further degree of success.

It would seem that the possibility of practically extending the knowledge
by using the mathematical artifices and physical simplifications of the ;
reviewved papers have been largely exhausted. Further advances along these ]
lines would appesr to require prohibitive amounts of graphical integrations or }
numerical calculations though electronic computers msy make this approsch ’
feasible.

It is therefore proposed that a search for a solution be instituted
0 . which will be guided along two lines of endeavor. The first of these would
be a systematic search of the more recent papers and journals in the fields
of mathematics and the physical sciences for a new or different mathematical
method or artifice. The second spproach would be a flow visualization study
of the velocity field about a& helicopter rotor in the various flight conditions.

The purposes of the latter study would be to indicate what simplifications may '

be made which would not too greatly limit the applicability of a& solution to
practical problems. It is thought that these two methods of approach would offer
some hope of finding a more satisfactory solution to the problem of the induced

velocity field about & helicopter rotor.
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Conclusions & Recommendations

The rotor 1n§.x§ced vg}oc;ty ?1@1@ theories that have been reviewed herein
have made definite u:;nd w;rth\;ﬁile contributions to the understanding of the
flow through helicopter rotors. However they have in the main been either
over-simplified, limited by their assumptions to special flight conditions, or
are rather long and tedious in application. In genersl the problem of the
periodicity of flow has beén neglected entirely. It is therefore recommended
that a program of study be initiated which will be directed towsrd finding a
more practicable solution to the problem of the induced velocity field about a
helicoptexr rotorx. |
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